일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- BigData
- Toast Message
- 장고
- 인공지능
- view
- Android
- 모델
- 빅데이터
- 파이썬
- AI
- python
- model
- Machine Learning
- swift
- 기계학습
- 머신러닝
- swift toast message
- APP
- 앱
- 디자인패턴
- Artificial Intelligence
- 딥러닝
- 템플릿
- ios toast message
- Django
- Deep learning
- 시각화
- IOS
- toast
- Pycharm
- Today
- Total
목록인공지능 이론/쉽게 읽는 인공지능과 머신러닝, 딥러닝 이론 (19)
이끼의 생각
보호되어 있는 글입니다.
딥러닝(Deep Learning)이란? 딥러닝(Deep Learning)이란 여러 층을 가진 인공신경망(Artificial Neural Network, ANN)을 사용하여 머신러닝 학습을 수행하는 것으로 심층학습이라고도 부릅니다. 따라서 딥러닝은 머신러닝과 전혀 다른 개념이 아니라 머신러닝의 한 종류라고 할 수 있습니다. 인간의 두뇌와 비슷한 모양의 대형 인공 신경망을 형성하는 일종의 기계 학습으로 대규모 인공 신경망에 학습 알고리즘과 지속적으로 증가하는 양의 데이터를 공급함으로써, "사고"하는 능력과 처리하는 데이터를 "학습"하는 능력을 지속적으로 개선합니다. 기존의 머신러닝에서는 학습하려는 데이터의 여러 특징 중에서 어떤 특징을 추출할지를 사람이 직접 분석하고 판단해야만 했지만 딥러닝에서는 기계가 자..
반지도 학습(Semisupervised learning) 지도학습, 비지도학습, 강화학습은 대표적인 기계학습 방법들로 많은 분야에서 활용됩니다. 이번엔 많이 사용되지 않는 반지도 학습에 대해 짧게 설명을 드리겠습니다. 레이블이 있는 데이터와 없는 데이터 모두를 활용해서 학습하는 것인데, 대개의 경우는 다수의 레이블 없는 데이터를 약간의 레이블 있는 데이터로 보충해서 학습하는 종류의 문제를 다룹니다. 머신러닝 알고리즘 머신러닝은 학습하려는 문제의 유형에 따라 크게 지도 학습, 비지도 학습, 그리고 강화 학습으로 나눌 수 있습니다. 그리고 각 학습 방법들은 상황에 맞는 다양한 알고리즘을 사용하여 구현할 수 있습니다. 다음은 머신러닝 학습에서 사용되는 대표적인 알고리즘입니다. 1. 서포트 벡터 머신(Suppo..
강화 학습(Reinforcement Learning) 위의 두 문제의 분류는 지도의 여부에 따른 것이었는데, 강화학습은 조금 다릅니다. 지도 학습과 비지도 학습이 학습 데이터가 주어진 상태에서 환경에 변화가 없는 정적인 환경에서 학습을 진행했다면, 강화 학습은 어떤 환경 안에서 정의된 주체(agent)가 현재의 상태(state)를 관찰하여 선택할 수 있는 행동(action)들 중에서 가장 최대의 보상(reward)을 가져다주는지 행동이 무엇인지를 학습하는 것입니다. 즉, 현재의 상태(State)에서 어떤 행동(Action)을 취하는 것이 최적인지를 학습하는 것입니다. 강화 학습은 주체(agent)가 환경으로부터 보상을 받음으로써 학습하기 때문에 지도 학습과 유사해 보이지만, 사람으로부터 학습을 받는 것이..
비지도 학습(Unsupervised Learning) 선생님이 문제와 함께 정답(레이블)까지 알려주는 지도 학습과는 달리 비지도 학습(Unsupervised Learning)은 문제는 알려주되 정답까지는 알려주지 않는 학습 방식입니다. 즉, 여러 문제를 학습함으로써 해당 데이터의 패턴, 특성 및 구조를 스스로 파악하여, 이를 통해 새로운 데이터에서 일정한 규칙성을 찾는 방법입니다. 비지도 학습은 구체적인 결과에 대한 사전 지식은 없지만 해당 결과 데이터를 통해 유의미한 지식을 얻고자 할 때 사용되며, 사람도 제대로 알 수 없는 본질적인 문제나 데이터에 숨겨진 특징이나 구조 등을 연구할 때 많이 활용됩니다. 사람 없이 컴퓨터가 스스로 레이블 되어 있지 않은 데이터에 대해 학습하는 것. 즉 y없이 x만 이용..
머신러닝의 분류 머신러닝은 학습하려는 문제의 유형에 따라 크게 다음과 같은 세 가지로 분류할 수 있습니다. 1. 지도 학습(Supervised Learning) 2. 비지도 학습(Unsupervised Learning) 3. 강화 학습(Reinforcement Learning) 지도 학습(Supervised Learning) 지도 학습(Supervised Learning)이란 간단히 말해 선생님이 문제를 내고 그 다음 바로 정답까지 같이 알려주는 방식의 학습 방법입니다. 즉, 여러 문제와 답을 같이 학습함으로써 미지의 문제에 대한 올바른 답을 예측하고자 하는 방법입니다. 따라서 지도 학습을 위한 데이터에는 문제와 함께 그 정답까지 함께 알고 있는 데이터가 선택됩니다. 예를 들어, “장미꽃이 찍혀 있는 이..
과거에는 인공지능을 개발할 때 해당 분야의 전문가들이 만든 많은 양의 샘플들을 데이터베이스화하여 자료들을 일일이 수작업으로 컴퓨터에 직접 등록하는 방법을 사용했습니다. 하지만 이러한 방법은 대부분의 작업이 사람의 손을 거쳐야 하므로 필연적으로 많은 노력과 비용이 발생하게 됩니다. 또한, 시대가 발전함에 따라 사람조차 명확하게 구분할 수 없는 지식(no explicit knowledge)을 구현해야 하거나, 사람이 일일이 구현하기에는 너무 많은 양의 규칙들이 필요한 경우가 생겨나기 시작합니다.이러한 경우에 사용할 수 있도록 고안된 방법이 바로 머신러닝(Machine Learning)입니다. 머신러닝(Machine Learning)이란? 기계학습이라고도 불리는 머신러닝은 컴퓨터를 인간처럼 학습시킴으로써 인간..
인공지능(Artificial Intelligence, AI) 인공지능이란 인간이 가지고 있는 지적 능력을 컴퓨터에서 구현하는 다양한 기술이나 소프트웨어, 컴퓨터 시스템 등을 가리키며, 알파고의 등장으로 4차 산업혁명의 메인 화두 중 하나로 손꼽히고 있습니다. 이러한 인공지능 기술의 발전은 신속하고 강력한 병렬 처리 기능을 제공하는 그래픽 처리 장치(GPU)의 도입과 폭발적으로 늘어나고 있는 빅데이터를 바탕으로 더욱 가속화되고 있는 추세입니다. 이러한 인공지능(AI) 분야는 딥러닝과 머신러닝보다 훨씬 더 큰 포괄적인 분야라고 할 수 있습니다. 머신러닝(Machine Learning) 머신러닝은 컴퓨터를 인간처럼 학습시킴으로써 컴퓨터가 새로운 규칙을 생성할 수 있지 않을까 하는 시도에서 시작되었습니다. 이처..